
50 The Delphi Magazine Issue 39

Beating the System:
Surfing Explorer’s Namespace
by Dave Jewell

Wonderful though Delphi is,
there are some curious omis-

sions in the functionality which
Inprise provide, and that’s true
even in Delphi 4. One such omis-
sion occurs in the Dialogs page of
the Component Palette. Delphi
faithfully provides VCL wrappers
for much of the functionality in
COMDLG32.DLL, the Common Dia-
logs library, but there’s no dialog
for browsing directories. Yes,
there are dialogs for opening and
saving files, but if you simply want
to provide the user with a means to
choose a directory (a frequent
requirement, particularly impor-
tant when creating installers), then
there’s nothing to help you.

In fairness to Inprise, the lack of
directory browsing functionality in
Delphi is simply a reflection of its
absence in the Common Dialogs
library, the code just isn’t there.
But the necessary code does exist
in the SHELL32.DLL library, a large
file that contains most of the guts
of the Windows Explorer itself. The
necessary API routine is called
SHBrowseForFolder, and in this arti-
cle I’ll create a new component
which makes it easy to browse not
only folders, but other areas of the
Explorer’s namespace as well.

Although the SHBrowseForFolder
routine is defined in the
SHLOBJ.PAS file that ships with
Delphi 3, Inprise never actually
made use of it in Delphi 3. They did
quietly implement a new Delphi 4
routine, SelectDirectory, which is
hidden away inside FILECTRL.PAS.
This routine does make use of the
SHBrowseForFolder call and, as the
name suggests, allows you to easily
prompt the user for a directory,
displaying the standard Windows
directory selection dialog in the
process. (Just to add a little confu-
sion here, you should note that
Inprise couldn’t resist trying out
Delphi 4’s ability to overload

functions with different parameter
signatures! You’ll find that
FILECTRL.PAS contains two routines
called SelectDirectory, only one
makes use of SHBrowseForFolder).

The SelectDirectory routine is
very simple to use. You can invoke
the standard Windows directory
browser dialog using no more code
than this:

var Dir: String;
begin

SelectDirectory(‘Select a ‘+

‘ directory for Wombat 1.3’,

‘’, Dir);

This will produce the effect shown
in Figure 1, returning the selected
directory in Dir. Like I said,
SelectDirectory is an easy to use
routine, but you pay a heavy price
in terms of a lack of features and
flexibility. For example, the under-
lying Windows API call includes
the necessary functionality to
notify your application whenever
the folder browser changes from
one directory to another, and this
just can’t be done through the
SelectDirectory call. Moreover,
SelectDirectory will, as the name
suggests, only allow you to select
directories. It knows nothing about
the ‘wide blue yonder’ of the
Explorer namespace.

Understanding
SHBrowseForFolder
In order to fully exploit the
power of SHBrowseForFolder,

we need to take a closer look at the
various bells and whistles it con-
tains. The function prototype for
the API call is given below:

function SHBrowseForFolder(var

lpbi: TBrowseInfo): PItemIDList;

stdcall;

As you can see, it takes a single
argument: a pointer to a record of
type TBrowseInfo, and returns
another pointer which specifies
the location of the selected folder
within the Explorer’s namespace.
Namespace? I’ve already men-
tioned the Explorer namespace a
couple of times. If it sounds like
gobbledegook to you, just bear in
mind that SHBrowseForFolder isn’t
specific to disk directories, it can
also be used to browse your print-
ers, fonts, Favourites folder, Recy-
cle Bin, even the Network
Neighbourhood. Taken together,
all these things constitute the
Explorer namespace.

Listing 1 shows what the associ-
ated TBrowseInfo record looks like.
This record tells SHBrowseForFolder
what we want to do, and also
returns some important informa-
tion to us.

The first field here is hwndOwner.
As with any dialog, it’s important

➤ Figure 1:
This is the basic
functionality provided by
the Inprise SelectDirectory
call. You can alter the
contents of the text label
above the tree-view
control, but that's about
your lot…

November 1998 The Delphi Magazine 51

to provide a handle to a window
which ‘owns’ the dialog and the
SHBrowseForFolder dialog is no
exception. The second parameter,
pidlRoot, is a pointer to a location
in the Explorer namespace which
represents the starting point for
the browse operation. If you set
this field to Nil it’s interpreted as
the root of the entire namespace
hierarchy, ie the Windows desk-
top. If you want to use some other
value (such as the Favourites
folder), then you need to make use
of another shell routine
SHGetSpecialFolderLocation. This
routine takes a simple integer con-
stant and converts it into a corre-
sponding PItemIDList which can
then be stored in the pidlRoot field.
The possible integer constants
include those shown in Listing 2
and lots more besides, you can find
them all in the SHLOBJ.PAS file.

The pszDisplayName field is a
pointer to a string containing the
returned name of the selected
item. Bear in mind that the
SHELL32.DLLlibrary won’t allocate
storage for this item for you.
Instead, you must allocate a buffer
and save a pointer to this buffer
into the pszDisplayName field. You’ll
then be able to read the string
when the function returns. Also
remember this display name is
only the final part of a pathname: if
you want the fully qualified
pathname some more magic is
required, as we shall see. For this
reason, I don’t make use of the
pszDisplayName in this month’s
code.

As you’d expect, the lpszTitle
field is used to specify the title
string for the browse operation. If
you look back to the code fragment
where I’ve used SelectDirectory,
and then compare this with the
corresponding screenshot (Figure
1), you’ll see that the designated
string has appeared just above the
dialog’s tree-view control. This
corresponds to the string passed
through the pszDisplayName field.
Surprisingly, Microsoft’s interface
to SHBrowseForFolder doesn’t
include the necessary functional-
ity to modify the actual dialog
window caption, but it turns out to
be a simple matter to do this, and

you’ll shortly see how I’ve worked
around this limitation.

The next field is ulFlags. This is a
series of bit flags which enables us
to modify certain aspects of the
browser dialog’s behaviour. As an
example, if you set the bif_
BrowseIncludeFiles flag (defined in
SHLOBJ.PAS), the dialog will allow
you to browse right down to the
level of individual files, making the
dialog work like a file picker to
select an existing file for some pur-
pose. Similarly, setting the
bif_StatusText will slightly reduce
the height of the dialog’s tree-view
control, making room for an addi-
tional label control within the
dialog. Again, we’ll return to this.

The lpfn field is used to provide
a call-back function whereby the
SHELL32 library calls the applica-
tion in two different situations,
firstly, when the dialog has been
initialised and, secondly, when the
current folder selection changes.
This gives us a chance to get ‘in on
the action’ rather than waiting for
the dialog to be dismissed. The
next field, lParam is for the use of
the application, we can put any
value we like into this field and it
will be passed back to us in the
call-back function. See the boxout
Implementing Callback Routines In
Delphi for some general guidelines
on how to make use of this. iImage
is the final field in the TBrowseInfo
record. This is an index into the
system image list, and once again,
it’s something that we’ll be cover-
ing in more detail later.

Introducing TShellBrowser
Armed with the above information,
we can write a non-visual
component which, unlike
SelectDirectory, gives you access

to the full power of
SHBrowseForFolder. I decided to call
my component TShellBrowser, for
the simple reason that, as pointed
out earlier, SHBrowseForFolder will
let you do more than simply
browse directory folders. The
complete source code to this com-
ponent is given in Listing 3. The
code has been tested under Delphi
3 and 4. I’ve tried to make this com-
ponent work as much like the exist-
ing Delphi common dialogs as
possible. Thus, there’s an Execute
method which caused the shell
browser dialog to be displayed on
the screen. If the user makes a
selection then True is returned
from this method, otherwise the
return value is False. In the former
case, the FolderPath property will
contain the path which was
selected by the user.

The Domain property specifies
what part of the Explorer
namespace is to be browsed while
the Options property can be used
to set up which options will be
passed to the SHBrowseFolder call
in the ulFlags field of the
TBrowseInfo record. Perhaps the
most interesting flag here is
IncludeStatusText. If this flag is set
then you’ll see an additional label
control appear in the Browse
dialog, see Figure 2. If you carefully
compare Figures 1 and 2, you’ll see
that there’s a second, status label
below the title label. With the code
presented in this article, the
default behaviour of my compo-
nent is to fill this label with the
pathname of the currently
selected item. This will happen ‘for
free’, you don’t need to add any
more code to make it work.

However, if you want to get in on
the action, I’ve also added an

➤ Below: Listing 2➤ Above: Listing 1

TBrowseInfo = packed record
hwndOwner: HWND; { Window handle of dialog box owner }
pidlRoot: PItemIDList; { Root folder from which to browse }
pszDisplayName: PAnsiChar; { Return display name of item selected. }
lpszTitle: PAnsiChar; { text to go in the banner over the tree. }
ulFlags: UINT; { Flags that control the return stuff }
lpfn: TFNBFFCallBack; { Pointer to callback routine }
lParam: LPARAM; { extra info that's passed back in callbacks }
iImage: Integer; { output var: where to return the Image index. }

end;

csidl_Recent = $0008; { The Recent documents list }
csidl_Favorites = $0006; { The Favourites folder }
csidl_Programs = $0002; { The Program folder }

52 The Delphi Magazine Issue 39

OnSelectionChanged event to the
component. Using this event, you
can arrange for the TShellBrowser
component to notify you whenever
the user changes the current selec-
tion. Moreover, you’ve got an
opportunity, within the event han-
dler, to accept or reject the selec-
tion change. The default behaviour
is to accept the selection change,
but if you reject it, then the
browser’s OK button will be dis-
abled. At the same time, the pro-
posed status label text is passed to
the event handler, and you can
modify this too, if you wish. Thus,
instead of displaying the path
name, you could display the modi-
fication date, byte size, or any
other attribute of the selected
item. As it stands, my code will
assume that you’re passing back a
file path and, if the file path won’t
physically fit into the status text
label, then it is truncated in a ‘nice’
manner, by replacing one or more
intermediate directories in the
path with ellipsis. You can see this
behaviour clearly in Figure 2.

The uppermost label can be
modified through the LabelTitle
property and you can centre the
browser dialog on the screen using
the Centred property. If you wish,
you can specify an initial folder
location for the browse operation
using the StartDirectory property
and you can even change the cap-
tion of the dialog box itself with the
WindowTitle property. Needless to
say, relatively few of these features
are available through the raw
SHBrowseForFolder interface. It’s
nice being able to wrap up
Microsoft’s clunky API calls into
nice, reusable Delphi components,
but if you can add to the existing
functionality at the same time, then
so much the better!

OK, so how does it work? At the
beginning of Listing 3, I’ve defined

unit ShellBrowser;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs;

type
TBrowseSelectionChanged = procedure (Sender: TObject;
var NewFolder: String; var Accept: Boolean) of Object;

TShellDomain = (sdDesktop, sdPrograms, sdControlPanel,
sdPrinters, sdMyDocuments, sdFavorites, sdStartup,

sdRecent, sdSendTo, sdRecycleBin, sdStartMenu, sdDrives,
sdNetwork, sdNetHood, sdFonts);

TBrowseOptions = (FileSystemDirsOnly, DontGoBelowDomain,
IncludeStatusText, ReturnSFAncestors, BrowseComputers,
BrowsePrinters, BrowseFiles);

TBrowseOptionSet = set of TBrowseOptions;
TShellBrowser = class(TComponent)
private
fLabelTitle: String;
fFolderPath: String;

➤ Listing 3 (and facing page)

a few data types which cor-
respond to the custom
properties required by the
browser component. This
includes the TShellDomain
type and TBrowseOptions for the
Options property. Because this is a
non-visual component, it’s derived
from TComponent. No work is done in
the component’s constructor
other than setting properties to
their default values.

The real fun starts in the Execute
method. First and foremost, it’s
necessary to use the ShGetMalloc
routine to obtain an interface to
the Explorer’s so-called task allo-
cator. This is simply a memory allo-
cator/de-allocator routine, buried
inside Explorer. We don’t actually
allocate any memory using this
interface but we do need to
de-allocate some! Remember I said
earlier that SHBrowseForFolder
returns a PItemIdList pointer. This
is allocated by Explorer on our
behalf and it’s our responsibility to
free it. I’ve seen one or two share-
ware components that wrap
SHBrowseForFolder which don’t
bother to do this. You have been
warned...

Having got our IMalloc interface,
the next job is to fill in the various
fields of the TBrowseInfo record. As
stated earlier, I didn’t use the
pszDisplayName field, simply setting
it to Nil. (Note if you do use this
field, conventional wisdom dic-
tates that you should allocate

memory for the buffer using the
task allocator. That seems to be
the way Inprise have done things
in the SelectDirectory code). I’ve
used two private functions here,
GetFlags and DomainToIDL. These
map the Options and Domain prop-
erties into the equivalent field
values for the TBrowseInfo record.
I’ve also specified that I want to use
a callback procedure, Browser
CallbackProc and I’ve passed the
component’s instance handle,
Self, as the lParam field. Again, see
the boxout on implementing
Delphi callbacks for a more
detailed discussion of this.

Once the SHBrowseForFolder rou-
tine has done its stuff, we examine
the function result to see if it was
successful. If not, the FolderPath
property is set to an empty string
and False is returned from the Exe-
cute method. If successful, the
SHGetPathFromIDList routine is
called to convert the PItemIDList
result into a human-readable
string (where do Microsoft get all
their strange, cruel, API designers
from?) which is used to set the
FolderPath property. At the same
time, we must remember to free
pidl using the task allocator inter-
face before returning True for
success.

➤ Figure 2:
This screenshot shows
how it’s possible to
add an additional
status text label.
Here, you can see
how I've 'massaged'
the status text (using
MinimizeName in
FILECTRL.PAS) so it
fits the available space.

November 1998 The Delphi Magazine 53

fWindowTitle: String;
fImageIndex: Integer;
fStartDir: String;
fReadOnlyStrProp: String;
fReadOnlyIntProp: Integer;
fDomain: TShellDomain;
fCentred: Boolean;
fOptions: TBrowseOptionSet;
fSelectionChanged: TBrowseSelectionChanged;
function DomainToIDL: Pointer;
function GetFlags: UINT;
procedure UpdateStatusText (Wnd: hWnd; const Selection:
String);

protected
public
constructor Create (AOwner: TComponent); override;
function Execute: Boolean;

published
property LabelTitle: String read fLabelTitle
write fLabelTitle;

property Centred: Boolean read fCentred
write fCentred default True;

property FolderPath: String read fFolderPath
write fReadOnlyStrProp;

property WindowTitle: String read fWindowTitle
write fWindowTitle;

property StartDirectory: String read fStartDir
write fStartDir;

property ImageIndex: Integer read fImageIndex
write fReadOnlyIntProp;

property Domain: TShellDomain read fDomain
write fDomain default sdDesktop;

property Options: TBrowseOptionSet read fOptions
write fOptions default [FileSystemDirsOnly];

property OnSelectionChanged: TBrowseSelectionChanged
read fSelectionChanged write fSelectionChanged;

end;
procedure Register;
implementation
uses
FileCtrl, ShlObj, ActiveX; {ActiveX needed for IMalloc. Sigh...}

procedure CentreWindow (Wnd: HWnd);
var Rect: TRect;
begin
GetWindowRect (Wnd, Rect);
SetWindowPos (Wnd, 0,
(Screen.Width - Rect.Right + Rect.Left) div 2,
(Screen.Height - Rect.Bottom + Rect.Top) div 2,
0, 0, swp_NoActivate or swp_NoSize or swp_NoZOrder);

end;
procedure TShellBrowser.UpdateStatusText (Wnd: hWnd; const
Selection: String);

var
R: TRect;
S: String;
StatusWnd: hWnd;

begin
// Have we got a status label?
if IncludeStatusText in fOptions then begin
// WARNING: Requires carnal knowledge of SHELL32.DLL !
// If Microsoft change the ID of the status label, the
// code simply won't be able to trim the text to fit.
S := Selection;
StatusWnd := GetDlgItem (Wnd, $3743);
if (StatusWnd <> 0) and
IsWindowVisible (StatusWnd) then begin
// We've got a status window. Should we trim the text?
GetWindowRect (StatusWnd, R);
S := MinimizeName(S, Application.MainForm.Canvas,
R.Right - R.Left);

end;
SendMessage(Wnd, bffm_SetStatusText, 0,
Integer(PChar(S)));

end;
end;
function BrowserCallbackProc (Wnd: hWnd; uMsg: UINT; lParam,
lpData: LPARAM): Integer; stdcall;

var
Accept: Boolean;
Selection: String;
Buff: array [0..255] of Char;
Self: TShellBrowser absolute lpData;

begin
with Self do case uMsg of
bffm_Initialized :
// The initialization call from the browse dialog.
begin
// Centre the dialog on screen if fCentred is True.
if fCentred then CentreWindow (Wnd);
// Set a custom dialog title if desired.
if fWindowTitle <> '' then
SetWindowText (Wnd, PChar(fWindowTitle));

// Set an initial directory selection if desired
if fStartDir <> '' then
SendMessage (Wnd, bffm_SetSelection, Ord(True),
Integer (PChar (fStartDir)));

end;
bffm_SelChanged :
// This message is received whenever the folder
// changes in the browser dialog. lParam is a pidl to
// the newly selected folder.

begin
Accept := True;
// Retrieve the current selection
SHGetPathFromIDList (PItemIDList (lParam), Buff);
Selection := StrPas (Buff);
// Notify application of selection change?
if Assigned (fSelectionChanged) then
fSelectionChanged (Self, Selection, Accept);

// Update status text
UpdateStatusText (Wnd, Selection);
// Enable/disable OK button as requested
SendMessage (Wnd, bffm_EnableOK, 0, Ord (Accept));

end;
end;
Result := 0;

end;
constructor TShellBrowser.Create (AOwner: TComponent);
begin
Inherited Create (AOwner);
fCentred := True;
fOptions := [FileSystemDirsOnly];

end;
function TShellBrowser.DomainToIDL: Pointer;
var
FolderNum: Integer;

begin
case fDomain of
sdPrograms: FolderNum := csidl_Programs;
sdControlPanel: FolderNum := csidl_Controls;
sdPrinters: FolderNum := csidl_Printers;
sdMyDocuments: FolderNum := csidl_Personal;
sdFavorites: FolderNum := csidl_Favorites;
sdStartup: FolderNum := csidl_Startup;
sdRecent: FolderNum := csidl_Recent;
sdSendTo: FolderNum := csidl_SendTo;
sdRecycleBin: FolderNum := csidl_BitBucket;
sdStartMenu: FolderNum := csidl_StartMenu;
sdDrives: FolderNum := csidl_Drives;
sdNetwork: FolderNum := csidl_Network;
sdNetHood: FolderNum := csidl_NetHood;
sdFonts: FolderNum := csidl_Fonts;
else FolderNum := 0;

end;
if FolderNum = 0 then
Result := Nil

else
SHGetSpecialFolderLocation (Application.Handle,
FolderNum, PItemIDList (Result));

end;
function TShellBrowser.GetFlags: UINT;
begin
Result := 0;
if FileSystemDirsOnly in fOptions then
Result := Result or bif_ReturnOnlyFSDirs;

if DontGoBelowDomain in fOptions then
Result := Result or bif_DontGoBelowDomain;

if IncludeStatusText in fOptions then
Result := Result or bif_StatusText;

if ReturnSFAncestors in fOptions then
Result := Result or bif_ReturnFSAncestors;

if BrowseComputers in fOptions then
Result := Result or bif_BrowseForComputer;

if BrowsePrinters in fOptions then
Result := Result or bif_BrowseForPrinter;

if BrowseFiles in fOptions then
Result := Result or bif_BrowseIncludeFiles;

end;
function TShellBrowser.Execute: Boolean;
var
pidl: PItemIDList;
ShellMalloc: IMalloc;
BrowseInfo: TBrowseInfo;
Buff: array [0..255] of Char;

begin
Result := False;
if (ShGetMalloc (ShellMalloc) = S_OK) and
(ShellMalloc <> Nil) then begin
BrowseInfo.hwndOwner := Application.Handle;
BrowseInfo.pidlRoot := DomainToIDL;
BrowseInfo.pszDisplayName := Nil;
BrowseInfo.lpszTitle := PChar (fLabelTitle);
BrowseInfo.ulFlags := GetFlags;
BrowseInfo.lpfn := BrowserCallbackProc;
BrowseInfo.lParam := Integer (Self);
pidl := SHBrowseForFolder (BrowseInfo);
if pidl = Nil then
fFolderPath := ''

else begin
Result := SHGetPathFromIDList (pidl, Buff);
fFolderPath := StrPas (Buff);
fImageIndex := BrowseInfo.iImage;
ShellMalloc.Free (pidl);

end;
end;

end;
procedure Register;
begin
RegisterComponents ('The X Factor', [TShellBrowser]);

end;
end.

54 The Delphi Magazine Issue 39

Within the callback procedure,
two possible messages can be
received. The first one is bffm_Ini-
tialized. This is a signal to say that
the dialog has been initialised and
is about to be displayed. It gives us
a chance to perform any needed
customisation of our own. Firstly, I
check the Centred property, cen-
tring the dialog on screen if it hap-
pens to be set to True. This
functionality isn’t directly sup-
ported by SHBrowseForFolder, but
as you can see, it’s easy to add.

Next, I see if a custom window
caption has been specified. If so,
the SetWindowText routine is called
to do the business. Again, this is
extra functionality over and above
what Microsoft’s code supplies.
Finally, if the user wants to set an
initial directory for browsing,
then I make use of the
bffm_SetSelection message to

make this directory the current
selection.

The second message is
bffm_SelChanged which, as the
name suggests, is sent whenever
the user changes the current selec-
tion. I wanted to provide a lot of
flexibility here, so I arranged for an
acceptance parameter to be
passed to the application along
with a var string giving the path of
the selected item. If the application
clears the Accept variable, then the
OK button is disabled in the dialog.
Equally, any change to the passed
path is reflected in the status text
that’s displayed through the
UpdateStatusText method.

The UpdateStatusText code is, it
has to be admitted, sailing a little
close to the wind in terms of good
programming practice! I wanted to
be able to trim the displayed
pathname so that it would fit nicely

into the status text label. In an
ideal world, Microsoft would have
done this for you, inside the
SHELL32.DLL code. At the very
least, they should have program-
matically provided a mechanism
for an application to query the
pixel length of the status label. As
ever, you get absolutely no help
whatsoever, and you have to do
the whole thing for yourself.

After a little dabbling, I discov-
ered that the dialog item ID of the
status text label was $3743. Armed
with this information, it’s easy to
use standard API techniques to
obtain a handle to the text label,
query its size and then use the
built-in MinimizeName routine (it’s
amazing what little-known goodies
are hiding in the FILECTRL.PAS file)
to shrink the pathname to fit. I’ve
tried to make this code as ‘fail-safe’
as possible. If the designated
dialog item doesn’t exist or if it’s
not visible for any reason, then the
MinimizeName routine won’t be
called, but the unchanged string
will simply be passed through the
bffm_SetStatusText call.

Conclusions
Well, that’s it. TShellBrowsermakes
it very easy to query the user for a
directory but it will also let you
surf the other domains within the
Explorer namespace. At the same
time, TShellBrowser adds a great
deal of extra functionality you
won’t find in the barefoot
SHBrowseForFolder interface.

There is, however, one loose
end. What is the significance of the
mysterious ImageIndex property
that’s exported by my component,
and how would you use it? To
answer that question, we need to
explore the delights of the system
image list, and that’s exactly what
we’ll be doing next month!

Dave Jewell is a freelance consul-
tant/programmer and technical
journalist specialising in sys-
tem-level work. He is Technical
Editor of Developers Review
which is also published by iTec.
You can contact Dave at
Dave@HexManiac.com

Implementing Callback Routines In Delphi
The more programming I do in Delphi, the more I wonder how I ever man-
aged to stay sane while working with C/C++. At one time, with older C/C++
development systems, you had to use special syntax to declare the callback
routine, and you also had to add it to a list of exports in a special definition
file. By contrast, writing callback routines in Delphi is so easy; but here’s a few
hints and tips.

In 32-bit Delphi, the most important thing to do is ensure that the stdcall
keyword is included in declaration of the routine, as I’ve done for
BrowserCallbackProc function. You can’t directly use methods of an object
as callback routines because an object’s Self parameter is passed as a hidden
parameter to every method. Because the Self parameter is absent, this cre-
ates a potential problem: how do we establish the ‘context’ of the object
within the callback routine? Or, to put it another way, how do we access our
own methods and fields? An obvious solution is to store the object instance in
a private var which is defined within the implementation part of a unit. This
will work for us because a programmer is only ever likely to use one instance
of TShellBrowser at any one time. But more generally, this solution won’t
work when there are multiple instances of an object in existence.

Fortunately, there’s a much more elegant approach, and that’s to make use
of the lParam parameter which is passed to many callback routines. Look at
the SDK documentation for EnumChildWindows, EnumDesktopWindows,
EnumFonts, etc. You’ll see that in each case, a lParam argument is passed to
the callback routine. By specifying that lParam should be equal to our object
instance, we can explicitly pass Self rather than having it passed implicitly
through an ordinary method call. Moreover, because the callback routine
isn’t a method, the Delphi compiler will happily allow us to define a variable
called Self, as you’ll see from my code. If you employ the absolute directive
to alias the Self variable to the lParam argument everything will work as
advertised, and if you then write a with Self statement, then you can essen-
tially forget about the fact that you’re not in a regular method of the object.

Adding the lParam facility to API callbacks was a rare stroke of genius on
Microsoft’s part, although I tend to doubt that they were looking ahead to
object oriented programming at the time. By their very nature, strokes of
genius tend to be few and far between, and this seems to be particularly true
at Redmond. As proof, I offer you some of the more recent API callback rou-
tines such as EnumDateFormats, EnumCalendarInfo, and others. Needless to
say, the lParam field is conspicuous by its absence.

	Understanding SHBrowseForFolder
	Introducing TShellBrowser
	Implementing Callback Routines In Delphi
	Conclusions

